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Preliminaries	
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Moving from 
Postprocessing to Run-

Time Scientific Data 
Analysis in HPC ���
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Analyze!

Postprocessing analysis 
and visualization	


Run-time analysis and  
visualization 	




Example of a data flow network 

Definition of Data 
Analysis	


•  Any data transformation, or a 
network or transformations.	

•  Anything done to original data 
beyond its original generation.	

•  Can be visual, analytical, statistical, 
or data management.	
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Some Examples	
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Particle Tracing Streamlines and Pathlines	
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Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in 
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	


Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields.  IPDPS ’11. 



Lagrangian 
Coherent 

Structures from 
FTLE	
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Left: Particle tracing of 288 million particles over 36 time steps in a 3600x2400x40 eddy resolving 
dataset. Right: 131 million particles over 48 time steps in a 500x500x100 simulation of Hurricane 
Isabel. Time includes I/O.	


Nouanesengsy et al., Parallel Particle Advection and FTLE Computation for Time-Varying Flow Fields, SC12, 
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Left: 64 surfaces each seeded with 512 particles are advected in a 504x504x2048 simulation of a 
solar flare. Right: 64 surfaces each with 2K seeds in a 2K x 2K x 2K Nek5000 thermal hydraulics 
simulation. Time excludes I/O.	


Stream Surfaces	


Lu et al., Scalable Computation of Stream Surfaces on Large Scale Vector Fields, submitted to SC14. 



Information Entropy	
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Computation of information entropy in 126x126x512 solar plume dataset shows 
59% strong scaling efficiency. Time excludes I/O.	


Chaudhuri et al., Scalable Computation of Distributions from Large Scale Data Sets, LDAV ’12. 



Topological Analysis	
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Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability 
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	


Gyulassy et al., The Parallel Computation of Morse-Smale Complexes, IPDPS ’12. 
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For 1283 particles, 41 % strong scaling for total tessellation time, including I/O; 
comparable to simulation strong scaling.	


Computational Geometry	


Peterka et al., High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation, 
submitted to SC14, 



Common Denominators	
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Streamlines and pathlines Stream surfaces 

FTLE Information entropy 

Morse-Smale 
complex 

Voronoi 
Tessellation 

•  Big science => big data, big machines	

•  Most analysis algorithms are not up to 

speed	

•  Either serial, or 	


•  Overheads kill scalability	


•  Solutions	


•  Process data closer to the source	

•  Write scalable analysis algorithms	


•  Parallelize in various forms	


•  Build software stacks of useful and 
reusable layers	


•  Usability and workflow	


•  Develop libraries rather than tools	

•  Users write small main programs  and 

call into libraries	




Core Infrastructure���

A library with a small l	
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Library	


Written in C++ with C bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	


DIY usage and library organization	


Features	


Parallel I/O to/from storage	

Domain decomposition	

Network communication	

Utilities	
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Write Your Own Main	
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Tutorial Examples	


•  Block I/O: Reading data, writing analysis 
results	


•  Static: Merge-based, Swap-based reduction, 
Neighborhood exchange	


•  Time-varying: Neighborhood exchange	


•  Spare thread: Simulation and analysis 
overlap	


•  MOAB: Unstructured mesh data model	


•  VTK: Integrating DIY communication with 
VTK filters	


•  R: Integrating DIY communication with R 
stats algorithms	


•  Multimodel: multiple domains and 
communicating between them	


Documentation	

•  README for installation	

•  User’s manual with description, examples 

of custom datatypes, complete API 
reference	




One Example in Greater Detail	
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Parallel Tessellation ���

We developed a prototype library for computing in situ Voronoi and Delaunay 
tessellations from particle data and applied it to cosmology, molecular dynamics, 

and plasma fusion. ���

Key Ideas	


•  Mesh tessellations convert sparse point data 
into continuous dense field data.	


•  Meshing output of simulations is data-
intensive and requires supercomputing 
resources	


•  No large-scale data-parallel tessellation tools 
exist.	


•  We developed such a library, tess.	


•  We achieved good parallel performance and 
scalability.	


•  Widespread GIS applicability in addition to 
the datasets we tested.	
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Tess Library	
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Tess is our parallel library for large-
scale distributed-memory Voronoi 
and Delaunay tessellation.	


Dense, our density estimator, currently 
reads the tessellation from disk and 
estimates density onto a regular grid. 
Eventually dense will be converted to a 
library that can be coupled in memory to 
tess output, saving the tessellation storage.	




Scalability	
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Strong and weak scaling for up to 
20483 synthetic particles and up to 
128K processes (excluding I/O) 
shows up to 90% strong scaling 
and up to 98% weak scaling.	




Applications in Cosmology	
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Histogram of Cell Density Contrast at t =  11

Cell Density Contrast ((density − mean) / mean)
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Histogram of Cell Density Contrast at t =  21

Cell Density Contrast ((density − mean) / mean)
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Histogram of Cell Density Contrast at t =  31

Cell Density Contrast ((density − mean) / mean)
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Temporal structure dynamics: As time progresses, the range of cell 
volume and density expands, kurtosis and skewness increases. These 
statistics are consistent with the governing physics of the formation 
of high- and low-density structures over time and can perhaps be 
used to summarize evolution at given time steps.	


Feature statistics: Total 
volume, surface area, 
curvature, topology of 
connected components 
of  Voronoi cells classify 
and quantify features. 	


Density estimation: 
Tessellations as 
intermediate 
representations enable 
accurate regular grid 
density estimators.	




Using Tessellation as a Density Estimator for 
Regular Grids���

sampling a regular density field from a distribution of particle positions 
using a Voronoi tessellation as an intermediate data model.	


Key Ideas 	


•  Convert discrete particle data into continuous function that can be 
interpolated, differentiated, interpolated, represented as a regular grid 
(field)	


•  Automatically adaptive window size and shape	


•  Comparison with CIC using synthetic and actual data	


•  Voronoi tessellation and density estimation computed in parallel on 
distributed-memory HPC machines	


•  Many visualization and analysis applications are written for regular 
grids	


•  Applications in astrophysics, environmental science, social science	
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Cloud in Cell (CIC)	


The mass of point P is distributed 
among nearest grid points G0 – 
G7.	


The volume of of the grid cube 
with corners G0 – G7, 	


  v(G0 , G7) is normalized to 1.0	


The mass assigned to grid point 
Gi is 	


  m(Gi) = 1.0 – v(Gi , P)	
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Tessellation (TESS)	


Parameter free: no fixed window 
size determined by grid or 
number of particles	


Kernel free: no smoothing kernel	


Shape free: asymmetrical, no 
window or kernel shape	


Automatically adaptive	
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P0 is a particle whose Voronoi cell covers several grid points. Its 
mass is uniformly distributed (zero-order estimation) to those 
grid points. P1 is a small cell that covers no grid points. Its mass is 
assigned to the nearest grid point.	




Dense Strong 
and Weak 

Scaling	


•  128^3 synthetic 
particles	


•  End-to-end time 
(including reading 
tessellation and 
writing image)	


•  3D->2D projection	


•  51% strong scaling 
(End-to-end) for 
4096^3 grid	
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Navarro-Frenk-White (NFW)	


k is a constant, 1 for us	


ρ(r) is Monte Carlo sampled 
to get test set of particles	


Ground truth is 2D plot of 	

ρ(r)	


We limit r to [-1.5, 1.5] and 
NFW(r) to 106	
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Our first synthetic dataset is derived from an analytical density function commonly 
used in cosmology.	




Visual Comparison	
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Analytical	
 TESS	
 CIC	


Top row:	

10243 3D density projected 
to 10242 2D density field 
and rendered in ParaView	


Bottom row:	

Ratio of analytical divided 

by estimated density	




Analytical 
Comparison	
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Comparison between analytical 2D 
density and estimated density at	

 y = 0 cross section for TESS	


Same for CIC	




Application: 2D Density of Halo	
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Particle data from 
HACC N-body 
cosmology code from 
halo ID 7445077095 	


Voronoi tesellation 
of halo particles 
colored by cell 
volume	


Final output 
2D density 
field for 
lensing	




Recap and Looking Ahead	
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To Do: Research Directions	


•  Irregular communication patterns	

•  Graphs	

•  Load balancing, dynamic partitioning	


•  Stochastic, approximate algorithms	

•  Limited resources	


•  Streaming and out of core algorithms	

•  Temporal analysis	


•  Load balancing	

•  Block overloading, dynamic 

reassignment	


•  Hybrid programming models	

•  MPI + X	


•  Coupling analysis in workflows	

•  Flexible coupling, decoupling	


Done: Benefits	

•  Productivity	


•  Express complex algorithms flexibly	

•  Simplify existing tasks	


•  Performance	

•  Published scalability	

•  Less data movement, earlier results	


•  Applications	

•  Spatiotemporal data	

•  Regular, unstructured, particle	

•  Simulation and experiment	




Further Reading	
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I have had my results for a long time: but I do not yet know how 
I am to arrive at them.                           Carl Friedrich Gauss.	
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